| Page Number | 108-041 | |-------------|----------| | Effective | Mar 2018 | | Replaces | New | | Section | 108 | **NOTE:** The MC (dotted) lines are provided to assist in magnetic coupling selection. The MC lines can be used for operating temperatures up to 200°F (93°C). For higher temperatures, consult factory. Blackmer Characteristic Curves are based on Brake Horsepower (BHp). To determine Motor Horsepower, drive train inefficiencies must be added to the BHp. Actual capacities are dependent upon the vapor pressure of the liquid and the inlet conditions of the system. ## CHARACTERISTIC CURVES Model: SMVP300C **NOTE:** The MC (dotted) lines are provided to assist in magnetic coupling selection. The MC lines can be used for operating temperatures up to 200°F (93°C). For higher temperatures, consult factory. Blackmer Characteristic Curves are based on Brake Horsepower (BHp). To determine Motor Horsepower, drive train inefficiencies must be added to the BHp. Actual capacities are dependent upon the vapor pressure of the liquid and the inlet conditions of the system. ## CHARACTERISTIC CURVES Model: SMVP300C **NOTE:** The MC (dotted) lines are provided to assist in magnetic coupling selection. The MC lines can be used for operating temperatures up to 200°F (93°C). For higher temperatures, consult factory. Blackmer Characteristic Curves are based on Brake Horsepower (BHp). To determine Motor Horsepower, drive train inefficiencies must be added to the BHp. Actual capacities are dependent upon the vapor pressure of the liquid and the inlet conditions of the system. ## CHARACTERISTIC CURVES Model: SMVP300C **NOTE:** The MC (dotted) lines are provided to assist in magnetic coupling selection. The MC lines can be used for operating temperatures up to 200°F (93°C). For higher temperatures, consult factory. Blackmer Characteristic Curves are based on Brake Horsepower (BHp). To determine Motor Horsepower, drive train inefficiencies must be added to the BHp. Actual capacities are dependent upon the vapor pressure of the liquid and the inlet conditions of the system.